forecast
¶
Invoked by: vaxstats forecast
The forecast
command performs forecasting on prepared data using a specified statistical forecasting model. It allows you to apply various forecasting algorithms to your time series data and generate predictions.
Usage¶
Examples¶
vaxstats forecast prepared_data.csv statsforecast.models.ARIMA \
--baseline_days 3 --sf_model_kwargs "{'order': (1,1,1)}" \
--output_path forecast_results.csv
Required Arguments¶
Argument | Description | Example |
---|---|---|
file_path |
Path to the input data file (CSV format). | data.csv , prepared_data.csv |
sf_model |
The forecasting model class to be used. | statsforecast.models.ARIMA |
Optional Arguments¶
Option | Description | Default | Example |
---|---|---|---|
--baseline_days |
The time window in days for the training set. | N/A | 3 , 7.5 |
--baseline_hours |
The time window in hours for the training set. | 72.0 |
48 , 120 |
--sf_model_args |
Positional arguments for the forecasting model constructor. | () |
"(1, 'string', [1, 2, 3])" |
--sf_model_kwargs |
Keyword arguments for the forecasting model constructor. | {} |
"{'order': (1,1,1), 'seasonal_order': (0,1,1,12)}" |
--output_path |
Path to save the output DataFrame with forecasted values. | output.csv |
forecast_results.csv |
Note
You must specify either --baseline_days
or --baseline_hours
, but not both.
Input¶
The input file should be a CSV file containing at least the following columns:
ds
: Datetime columny
: Target variable column, \(y\)
This file is typically the output of the prep
command or a similarly structured dataset.
Output¶
The forecast
command will generate a CSV file (default name: output.csv
) with the following columns:
- All original columns from the input file
y_hat
: The forecasted values, \(\hat{y}\)residuals
: The difference between actual and forecasted values (\(y - \hat{y}\))
Forecasting Model Specification¶
- Use the
sf_model
argument to specify the full path to the forecasting model class. - Use
--sf_model_args
and--sf_model_kwargs
to pass additional arguments to the model constructor. - Arguments should be specified using Python literal syntax.
Examples of Model Specifications¶
- ARIMA model with specific parameters:
- Simple exponential smoothing:
Tip
Experiment with different baseline windows and model parameters to find the best fit for your data. You can compare the residuals to evaluate model performance.